1. <rt id="ptjxw"><optgroup id="ptjxw"></optgroup></rt>
    1. <cite id="ptjxw"><form id="ptjxw"></form></cite>
    2. 您的位置:百味書屋 > 范文大全 > 經典范文 > 小學數學知識點總結 正文 本文移動端:小學數學知識點總結

      小學數學知識點總結

      2018-10-08 11:15:08 來源網站: 百味書屋

      小學數學知識點總結

      1

      歸一問題

        【含義】

        在解題時,先求出一份是多少(即單一量),然后以單一量為標準,求出所要求的數量。這類應用題叫做歸一問題。

        【數量關系】

        總量÷份數=1份數量

        1份數量×所占份數=所求幾份的數量

        另一總量÷(總量÷份數)=所求份數

        【解題思路和方法】

        先求出單一量,以單一量為標準,求出所要求的數量。

        例1

        買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?

        解

        (1)買1支鉛筆多少錢?0.6÷5=0.12(元)

        (2)買16支鉛筆需要多少錢?0.12×16=1.92(元)

        列成綜合算式0.6÷5×16=0.12×16=1.92(元)

        答:需要1.92元。

        例2

        3臺拖拉機3天耕地90公頃,照這樣計算,5臺拖拉機6天耕地多少公頃?

        解

        (1)1臺拖拉機1天耕地多少公頃?90÷3÷3=10(公頃)

        (2)5臺拖拉機6天耕地多少公頃?10×5×6=300(公頃)

        列成綜合算式90÷3÷3×5×6=10×30=300(公頃)

        答:5臺拖拉機6天耕地300公頃。

        例3

        5輛汽車4次可以運送100噸鋼材,如果用同樣的7輛汽車運送105噸鋼材,需要運幾次?

        解

        (1)1輛汽車1次能運多少噸鋼材?100÷5÷4=5(噸)

        (2)7輛汽車1次能運多少噸鋼材?5×7=35(噸)

        (3)105噸鋼材7輛汽車需要運幾次?105÷35=3(次)

        列成綜合算式105÷(100÷5÷4×7)=3(次)

        答:需要運3次。


      2

      歸總問題

        【含義】

        解題時,常常先找出“總數量”,然后再根據其它條件算出所求的問題,叫歸總問題。所謂“總數量”是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產量、幾小時行的總路程等。

        【數量關系】

        1份數量×份數=總量

        總量÷1份數量=份數

        總量÷另一份數=另一每份數量

        【解題思路和方法】

        先求出總數量,再根據題意得出所求的數量。

        例1

        服裝廠原來做一套衣服用布3.2米,改進裁剪方法后,每套衣服用布2.8米。原來做791套衣服的布,現在可以做多少套?

        解

        (1)這批布總共有多少米?3.2×791=2531.2(米)

        (2)現在可以做多少套?2531.2÷2.8=904(套)

        列成綜合算式3.2×791÷2.8=904(套)

        答:現在可以做904套。

        例2

        小華每天讀24頁書,12天讀完了《紅巖》一書。小明每天讀36頁書,幾天可以讀完《紅巖》?

        解

        (1)《紅巖》這本書總共多少頁?24×12=288(頁)

        (2)小明幾天可以讀完《紅巖》?288÷36=8(天)

        列成綜合算式24×12÷36=8(天)

        答:小明8天可以讀完《紅巖》。

        例3

        食堂運來一批蔬菜,原計劃每天吃50千克,30天慢慢消費完這批蔬菜。后來根據大家的意見,每天比原計劃多吃10千克,這批蔬菜可以吃多少天?

        解

        (1)這批蔬菜共有多少千克?50×30=1500(千克)

        (2)這批蔬菜可以吃多少天?1500÷(50+10)=25(天)

        列成綜合算式50×30÷(50+10)=1500÷60=25(天)

        答:這批蔬菜可以吃25天。


      3

      和差問題

        【含義】

        已知兩個數量的和與差,求這兩個數量各是多少,這類應用題叫和差問題。

        【數量關系】

        大數=(和+差)÷2

        小數=(和-差)÷2

        【解題思路和方法】

        簡單的題目可以直接套用公式;復雜的題目變通后再用公式。

        例1

        甲乙兩班共有學生98人,甲班比乙班多6人,求兩班各有多少人?

        解

        甲班人數=(98+6)÷2=52(人)

        乙班人數=(98-6)÷2=46(人)

        答:甲班有52人,乙班有46人。

        例2

        長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。

        解

        長=(18+2)÷2=10(厘米)

        寬=(18-2)÷2=8(厘米)

        長方形的面積=10×8=80(平方厘米)

        答:長方形的面積為80平方厘米。

        例3

        有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。

        解

        甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數,丙是小數。由此可知

        甲袋化肥重量=(22+2)÷2=12(千克)

        丙袋化肥重量=(22-2)÷2=10(千克)

        乙袋化肥重量=32-12=20(千克)

        答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

        例4

        甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?

        解

        “從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐”,這說明甲車是大數,乙車是小數,甲與乙的差是(14×2+3),甲與乙的和是97,因此甲車筐數=(97+14×2+3)÷2=64(筐)

        乙車筐數=97-64=33(筐)

        答:甲車原來裝蘋果64筐,乙車原來裝蘋果33筐。


      4

      和倍問題

        【含義】

        已知兩個數的和及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做和倍問題。

        【數量關系】

        總和÷(幾倍+1)=較小的數

        總和-較小的數=較大的數

        較小的數×幾倍=較大的數

        【解題思路和方法】

        簡單的題目直接利用公式,復雜的題目變通后利用公式。

        例1

        果園里有杏樹和桃樹共248棵,桃樹的棵數是杏樹的3倍,求杏樹、桃樹各多少棵?

        解

        (1)杏樹有多少棵?248÷(3+1)=62(棵)

        (2)桃樹有多少棵?62×3=186(棵)

        答:杏樹有62棵,桃樹有186棵。

        例2

        東西兩個倉庫共存糧480噸,東庫存糧數是西庫存糧數的1.4倍,求兩庫各存糧多少噸?

        解

        (1)西庫存糧數=480÷(1.4+1)=200(噸)

        (2)東庫存糧數=480-200=280(噸)

        答:東庫存糧280噸,西庫存糧200噸。

        例3

        甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天后乙站車輛數是甲站的2倍?

        解

        每天從甲站開往乙站28輛,從乙站開往甲站24輛,相當于每天從甲站開往乙站(28-24)輛。把幾天以后甲站的車輛數當作1倍量,這時乙站的車輛數就是2倍量,兩站的車輛總數(52+32)就相當于(2+1)倍,

        那么,幾天以后甲站的車輛數減少為

        (52+32)÷(2+1)=28(輛)

        所求天數為(52-28)÷(28-24)=6(天)

        答:6天以后乙站車輛數是甲站的2倍。

        例4

        甲乙丙三數之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數各是多少?

        解

        乙丙兩數都與甲數有直接關系,因此把甲數作為1倍量。

        因為乙比甲的2倍少4,所以給乙加上4,乙數就變成甲數的2倍;

        又因為丙比甲的3倍多6,所以丙數減去6就變為甲數的3倍;

        這時(170+4-6)就相當于(1+2+3)倍。那么,

        甲數=(170+4-6)÷(1+2+3)=28

        乙數=28×2-4=52

        丙數=28×3+6=90

        答:甲數是28,乙數是52,丙數是90。


      5
      差倍問題

        【含義】

        已知兩個數的差及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做差倍問題。

        【數量關系】

        兩個數的差÷(幾倍-1)=較小的數

        較小的數×幾倍=較大的數

        【解題思路和方法】

        簡單的題目直接利用公式,復雜的題目變通后利用公式。

        例1

        果園里桃樹的棵數是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?

        解

        (1)杏樹有多少棵?124÷(3-1)=62(棵)

        (2)桃樹有多少棵?62×3=186(棵)

        答:果園里杏樹是62棵,桃樹是186棵。

        例2

        爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?

        解

        (1)兒子年齡=27÷(4-1)=9(歲)

        (2)爸爸年齡=9×4=36(歲)

        答:父子二人今年的年齡分別是36歲和9歲。

        例3

        商場改革經營管理辦法后,本月盈利比上月盈利的2倍還多12萬元,又知本月盈利比上月盈利多30萬元,求這兩個月盈利各是多少萬元?

        解

        如果把上月盈利作為1倍量,則(30-12)萬元就相當于上月盈利的(2-1)倍,因此

        上月盈利=(30-12)÷(2-1)=18(萬元)

        本月盈利=18+30=48(萬元)

        答:上月盈利是18萬元,本月盈利是48萬元。

        例4

        糧庫有94噸小麥和138噸玉米,如果每天運出小麥和玉米各是9噸,問幾天后剩下的玉米是小麥的3倍?

        解

        由于每天運出的小麥和玉米的數量相等,所以剩下的數量差等于原來的數量差(138-94)。把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么,(138-94)就相當于(3-1)倍,因此

        剩下的小麥數量=(138-94)÷(3-1)=22(噸)

        運出的小麥數量=94-22=72(噸)

        運糧的天數=72÷9=8(天)

        答:8天以后剩下的玉米是小麥的3倍。


      6

      倍比問題

        【含義】

        有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數,再用倍比的方法算出要求的數,這類應用題叫做倍比問題。

        【數量關系】

        總量÷一個數量=倍數

        另一個數量×倍數=另一總量

        【解題思路和方法】

        先求出倍數,再用倍比關系求出要求的數。

        例1

        100千克油菜籽可以榨油40千克,現在有油菜籽3700千克,可以榨油多少?

        解

        (1)3700千克是100千克的多少倍?3700÷100=37(倍)

        (2)可以榨油多少千克?40×37=1480(千克)

        列成綜合算式40×(3700÷100)=1480(千克)

        答:可以榨油1480千克。

        例2

        今年植樹節這天,某小學300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?

        解

        (1)48000名是300名的多少倍?48000÷300=160(倍)

        (2)共植樹多少棵?400×160=64000(棵)

        列成綜合算式400×(48000÷300)=64000(棵)

        答:全縣48000名師生共植樹64000棵。

        例3

        鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉800畝果園共收入多少元?全縣16000畝果園共收入多少元?

        解

        (1)800畝是4畝的幾倍?800÷4=200(倍)

        (2)800畝收入多少元?11111×200=2222200(元)

        (3)16000畝是800畝的幾倍?16000÷800=20(倍)

        (4)16000畝收入多少元?2222200×20=44444000(元)

        答:全鄉800畝果園共收入2222200元,全縣16000畝果園共收入44444000元。

       


        7

        相遇問題

        【含義】

        兩個運動的物體同時由兩地出發相向而行,在途中相遇。這類應用題叫做相遇問題。

        【數量關系】

        相遇時間=總路程÷(甲速+乙速)

        總路程=(甲速+乙速)×相遇時間

        【解題思路和方法】

        簡單的題目可直接利用公式,復雜的題目變通后再利用公式。

        例1

        南京到上海的水路長392千米,同時從兩港各開出一艘輪船相對而行,從南京開出的船每小時行28千米,從上海開出的船每小時行21千米,經過幾小時兩船相遇?

        解

        392÷(28+21)=8(小時)

        答:經過8小時兩船相遇。

        例2

        小李和小劉在周長為400米的環形跑道上跑步,小李每秒鐘跑5米,小劉每秒鐘跑3米,他們從同一地點同時出發,反向而跑,那么,二人從出發到第二次相遇需多長時間?

        解

        “第二次相遇”可以理解為二人跑了兩圈。

        因此總路程為400×2

        相遇時間=(400×2)÷(5+3)=100(秒)

        答:二人從出發到第二次相遇需100秒時間。

        例3

        甲乙二人同時從兩地騎自行車相向而行,甲每小時行15千米,乙每小時行13千米,兩人在距中點3千米處相遇,求兩地的距離。

        解

        “兩人在距中點3千米處相遇”是正確理解本題題意的關鍵。從題中可知甲騎得快,乙騎得慢,甲過了中點3千米,乙距中點3千米,就是說甲比乙多走的路程是(3×2)千米,因此,

        相遇時間=(3×2)÷(15-13)=3(小時)

        兩地距離=(15+13)×3=84(千米)

        答:兩地距離是84千米。


      8
      追及問題

        【含義】

        兩個運動物體在不同地點同時出發(或者在同一地點而不是同時出發,或者在不同地點又不是同時出發)作同向運動,在后面的,行進速度要快些,在前面的,行進速度較慢些,在一定時間之內,后面的追上前面的物體。這類應用題就叫做追及問題。

        【數量關系】

        追及時間=追及路程÷(快速-慢速)

        追及路程=(快速-慢速)×追及時間

        【解題思路和方法】

        簡單的題目直接利用公式,復雜的題目變通后利用公式。

        例1

        好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?

        解

        (1)劣馬先走12天能走多少千米?75×12=900(千米)

        (2)好馬幾天追上劣馬?900÷(120-75)=20(天)

        列成綜合算式75×12÷(120-75)=900÷45=20(天)

        答:好馬20天能追上劣馬。

        例2

        小明和小亮在200米環形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發,同向而跑。小明第一次追上小亮時跑了500米,求小亮的速度是每秒多少米。

        解

        小明第一次追上小亮時比小亮多跑一圈,即200米,此時小亮跑了(500-200)米,要知小亮的速度,須知追及時間,即小明跑500米所用的時間。又知小明跑200米用40秒,則跑500米用[40×(500÷200)]秒,所以小亮的速度是

        (500-200)÷[40×(500÷200)]

        =300÷100=3(米)

        答:小亮的速度是每秒3米。

        例3

        我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?

        解

        敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,這段時間敵人逃跑的路程是[10×(22-6)]千米,甲乙兩地相距60千米。由此推知

        追及時間=[10×(22-6)+60]÷(30-10)

        =220÷20=11(小時)

        答:解放軍在11小時后可以追上敵人。

        例4

        一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。

        解

        這道題可以由相遇問題轉化為追及問題來解決。從題中可知客車落后于貨車(16×2)千米,客車追上貨車的時間就是前面所說的相遇時間,

        這個時間為16×2÷(48-40)=4(小時)

        所以兩站間的距離為(48+40)×4=352(千米)

        列成綜合算式(48+40)×[16×2÷(48-40)]

        =88×4

        =352(千米)

        答:甲乙兩站的距離是352千米。


      9

      植樹問題

        【含義】

        按相等的距離植樹,在距離、棵距、棵數這三個量之間,已知其中的兩個量,要求第三個量,這類應用題叫做植樹問題。

        【數量關系】

        線形植樹棵數=距離÷棵距+1

        環形植樹棵數=距離÷棵距

        方形植樹棵數=距離÷棵距-4

        三角形植樹棵數=距離÷棵距-3

        面積植樹棵數=面積÷(棵距×行距)

        【解題思路和方法】

        先弄清楚植樹問題的類型,然后可以利用公式。

        例1

        一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?

        解

        136÷2+1=68+1=69(棵)

        答:一共要栽69棵垂柳。

        例2

        一個圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?

        解

        400÷4=100(棵)

        答:一共能栽100棵白楊樹。

        例3

        一個正方形的運動場,每邊長220米,每隔8米安裝一個照明燈,一共可以安裝多少個照明燈?

        解

        220×4÷8-4=110-4=106(個)

        答:一共可以安裝106個照明燈。

        例4

        給一個面積為96平方米的住宅鋪設地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?

        解

        96÷(0.6×0.4)=96÷0.24=400(塊)

        答:至少需要400塊地板磚。

        例5

        一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個電桿,每個電桿上安裝2盞路燈,一共可以安裝多少盞路燈?

        解

        (1)橋的一邊有多少個電桿?500÷50+1=11(個)

        (2)橋的兩邊有多少個電桿?11×2=22(個)

        (3)大橋兩邊可安裝多少盞路燈?22×2=44(盞)

        答:大橋兩邊一共可以安裝44盞路燈。


      10
      年齡問題

        【含義】

        這類問題是根據題目的內容而得名,它的主要特點是兩人的年齡差不變,但是,兩人年齡之間的倍數關系隨著年齡的增長在發生變化。

        【數量關系】

        年齡問題往往與和差、和倍、差倍問題有著密切聯系,尤其與差倍問題的解題思路是一致的,要緊緊抓住“年齡差不變”這個特點。

        【解題思路和方法】

        可以利用“差倍問題”的解題思路和方法。

        例1

        爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?

        解

        35÷5=7(倍)

        (35+1)÷(5+1)=6(倍)

        答:今年爸爸的年齡是亮亮的7倍,

        明年爸爸的年齡是亮亮的6倍。

        例2

        母親今年37歲,女兒今年7歲,幾年后母親的年齡是女兒的4倍?

        解

        (1)母親比女兒的年齡大多少歲?37-7=30(歲)

        (2)幾年后母親的年齡是女兒的4倍?30÷(4-1)-7=3(年)

        列成綜合算式(37-7)÷(4-1)-7=3(年)

        答:3年后母親的年齡是女兒的4倍。

        例3

        甲對乙說:“當我的歲數曾經是你現在的歲數時,你才4歲”。乙對甲說:“當我的歲數將來是你現在的歲數時,你將61歲”。求甲乙現在的歲數各是多少?

        解

        這里涉及到三個年份:過去某一年、今年、將來某一年。列表分析:

        過去某一年 今年 將來某一年

        甲 □歲 △歲 61歲

        乙 4歲 □歲 △歲

        表中兩個“□”表示同一個數,兩個“△”表示同一個數。

        因為兩個人的年齡差總相等:□-4=△-□=61-△,也就是4,□,△,61成等差數列,所以,61應該比4大3個年齡差,

        因此二人年齡差為(61-4)÷3=19(歲)

        甲今年的歲數為△=61-19=42(歲)

        乙今年的歲數為□=42-19=23(歲)

        答:甲今年的歲數是42歲,乙今年的歲數是23歲。
       


      11

      行船問題

        【含義】

        行船問題也就是與航行有關的問題。解答這類問題要弄清船速與水速,船速是船只本身航行的速度,也就是船只在靜水中航行的速度;水速是水流的速度,船只順水航行的速度是船速與水速之和;船只逆水航行的速度是船速與水速之差。

        【數量關系】

        (順水速度+逆水速度)÷2=船速

        (順水速度-逆水速度)÷2=水速

        順水速=船速×2-逆水速=逆水速+水速×2

        逆水速=船速×2-順水速=順水速-水速×2

        【解題思路和方法】

        大多數情況可以直接利用數量關系的公式。

        例1

        一只船順水行320千米需用8小時,水流速度為每小時15千米,這只船逆水行這段路程需用幾小時?

        解

        由條件知,順水速=船速+水速=320÷8,而水速為每小時15千米,所以,船速為每小時320÷8-15=25(千米)

        船的逆水速為25-15=10(千米)

        船逆水行這段路程的時間為320÷10=32(小時)

        答:這只船逆水行這段路程需用32小時。

        例2

        甲船逆水行360千米需18小時,返回原地需10小時;乙船逆水行同樣一段距離需15小時,返回原地需多少時間?

        解

        由題意得甲船速+水速=360÷10=36

        甲船速-水速=360÷18=20

        可見(36-20)相當于水速的2倍,

        所以,水速為每小時(36-20)÷2=8(千米)

        又因為,乙船速-水速=360÷15,

        所以,乙船速為360÷15+8=32(千米)

        乙船順水速為32+8=40(千米)

        所以,乙船順水航行360千米需要

        360÷40=9(小時)

        答:乙船返回原地需要9小時。

       


      12

      列車問題

        【含義】

        這是與列車行駛有關的一些問題,解答時要注意列車車身的長度。

        【數量關系】

        火車過橋:過橋時間=(車長+橋長)÷車速

        火車追及:追及時間=(甲車長+乙車長+距離)

        ÷(甲車速-乙車速)

        火車相遇:相遇時間=(甲車長+乙車長+距離)

        ÷(甲車速+乙車速)

        【解題思路和方法】

        大多數情況可以直接利用數量關系的公式。

        例1

        一座大橋長2400米,一列火車以每分鐘900米的速度通過大橋,從車頭開上橋到車尾離開橋共需要3分鐘。這列火車長多少米?

        解

        火車3分鐘所行的路程,就是橋長與火車車身長度的和。

        (1)火車3分鐘行多少米?900×3=2700(米)

        (2)這列火車長多少米?2700-2400=300(米)

        列成綜合算式900×3-2400=300(米)

        答:這列火車長300米。

        例2

        一列長200米的火車以每秒8米的速度通過一座大橋,用了2分5秒鐘時間,求大橋的長度是多少米?

        解

        火車過橋所用的時間是2分5秒=125秒,所走的路程是(8×125)米,這段路程就是(200米+橋長),所以,橋長為

        8×125-200=800(米)

        答:大橋的長度是800米。

        例3

        一列長225米的慢車以每秒17米的速度行駛,一列長140米的快車以每秒22米的速度在后面追趕,求快車從追上到追過慢車需要多長時間?

        解

        從追上到追過,快車比慢車要多行(225+140)米,而快車比慢車每秒多行(22-17)米,因此,所求的時間為

        (225+140)÷(22-17)=73(秒)

        答:需要73秒。

        例4

        一列長150米的列車以每秒22米的速度行駛,有一個扳道工人以每秒3米的速度迎面走來,那么,火車從工人身旁駛過需要多少時間?

        解

        如果把人看作一列長度為零的火車,原題就相當于火車相遇問題。

        150÷(22+3)=6(秒)

        答:火車從工人身旁駛過需要6秒鐘。


      13

      時鐘問題

        【含義】

        就是研究鐘面上時針與分針關系的問題,如兩針重合、兩針垂直、兩針成一線、兩針夾角為60度等。時鐘問題可與追及問題相類比。

        【數量關系】

        分針的速度是時針的12倍,

        二者的速度差為11/12。

        通常按追及問題來對待,也可以按差倍問題來計算。

        【解題思路和方法】

        變通為“追及問題”后可以直接利用公式。

        例1

        從時針指向4點開始,再經過多少分鐘時針正好與分針重合?

        解

        鐘面的一周分為60格,分針每分鐘走一格,每小時走60格;時針每小時走5格,每分鐘走5/60=1/12格。每分鐘分針比時針多走(1-1/12)=11/12格。4點整,時針在前,分針在后,兩針相距20格。所以

        分針追上時針的時間為20÷(1-1/12)≈22(分)

        答:再經過22分鐘時針正好與分針重合。

        例2

        四點和五點之間,時針和分針在什么時候成直角?

        解

        鐘面上有60格,它的1/4是15格,因而兩針成直角的時候相差15格(包括分針在時針的前或后15格兩種情況)。四點整的時候,分針在時針后(5×4)格,如果分針在時針后與它成直角,那么分針就要比時針多走(5×4-15)格,如果分針在時針前與它成直角,那么分針就要比時針多走(5×4+15)格。再根據1分鐘分針比時針多走(1-1/12)格就可以求出二針成直角的時間。

        (5×4-15)÷(1-1/12)≈6(分)

        (5×4+15)÷(1-1/12)≈38(分)

        答:4點06分及4點38分時兩針成直角。

        例3

        六點與七點之間什么時候時針與分針重合?

        解

        六點整的時候,分針在時針后(5×6)格,分針要與時針重合,就得追上時針。這實際上是一個追及問題。

        (5×6)÷(1-1/12)≈33(分)

        答:6點33分的時候分針與時針重合。


      14

      盈虧問題

        【含義】

        根據一定的人數,分配一定的物品,在兩次分配中,一次有余(盈),一次不足(虧),或兩次都有余,或兩次都不足,求人數或物品數,這類應用題叫做盈虧問題。

        【數量關系】

        一般地說,在兩次分配中,如果一次盈,一次虧,則有:

        參加分配總人數=(盈+虧)÷分配差

        如果兩次都盈或都虧,則有:

        參加分配總人數=(大盈-小盈)÷分配差

        參加分配總人數=(大虧-小虧)÷分配差

        【解題思路和方法】

        大多數情況可以直接利用數量關系的公式。

        例1

        給幼兒園小朋友分蘋果,若每人分3個就余11個;若每人分4個就少1個。問有多少小朋友?有多少個蘋果?

        解

        按照“參加分配的總人數=(盈+虧)÷分配差”的數量關系:

        (1)有小朋友多少人?(11+1)÷(4-3)=12(人)

        (2)有多少個蘋果?3×12+11=47(個)

        答:有小朋友12人,有47個蘋果。

        例2

        修一條公路,如果每天修260米,修完全長就得延長8天;如果每天修300米,修完全長仍得延長4天。這條路全長多少米?

        解

        題中原定完成任務的天數,就相當于“參加分配的總人數”,按照“參加分配的總人數=(大虧-小虧)÷分配差”的數量關系,可以得知

        原定完成任務的天數為

        (260×8-300×4)÷(300-260)=22(天)

        這條路全長為300×(22+4)=7800(米)

        答:這條路全長7800米。

        例3

        學校組織春游,如果每輛車坐40人,就余下30人;如果每輛車坐45人,就剛好坐完。問有多少車?多少人?

        解

        本題中的車輛數就相當于“參加分配的總人數”,于是就有

        (1)有多少車?(30-0)÷(45-40)=6(輛)

        (2)有多少人?40×6+30=270(人)

        答:有6輛車,有270人。


      15

      工程問題

        【含義】

        工程問題主要研究工作量、工作效率和工作時間三者之間的關系。這類問題在已知條件中,常常不給出工作量的具體數量,只提出“一項工程”、“一塊土地”、“一條水渠”、“一件工作”等,在解題時,常常用單位“1”表示工作總量。

        【數量關系】

        解答工程問題的關鍵是把工作總量看作“1”,這樣,工作效率就是工作時間的倒數(它表示單位時間內完成工作總量的幾分之幾),進而就可以根據工作量、工作效率、工作時間三者之間的關系列出算式。

        工作量=工作效率×工作時間

        工作時間=工作量÷工作效率

        工作時間=總工作量÷(甲工作效率+乙工作效率)

        【解題思路和方法】

        變通后可以利用上述數量關系的公式。

        例1

        一項工程,甲隊單獨做需要10天完成,乙隊單獨做需要15天完成,現在兩隊合作,需要幾天完成?

        解

        題中的“一項工程”是工作總量,由于沒有給出這項工程的具體數量,因此,把此項工程看作單位“1”。由于甲隊獨做需10天完成,那么每天完成這項工程的1/10;乙隊單獨做需15天完成,每天完成這項工程的1/15;兩隊合做,每天可以完成這項工程的(1/10+1/15)。

        由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)

        答:兩隊合做需要6天完成。

        例2

        一批零件,甲獨做6小時完成,乙獨做8小時完成。現在兩人合做,完成任務時甲比乙多做24個,求這批零件共有多少個?

        解一

        設總工作量為1,則甲每小時完成1/6,乙每小時完成1/8,甲比乙每小時多完成(1/6-1/8),二人合做時每小時完成(1/6+1/8)。因為二人合做需要[1÷(1/6+1/8)]小時,這個時間內,甲比乙多做24個零件,所以

        (1)每小時甲比乙多做多少零件?

        24÷[1÷(1/6+1/8)]=7(個)

        (2)這批零件共有多少個?

        7÷(1/6-1/8)=168(個)

        答:這批零件共有168個。

        解二

        上面這道題還可以用另一種方法計算:

        兩人合做,完成任務時甲乙的工作量之比為1/6∶1/8=4∶3

        由此可知,甲比乙多完成總工作量的4-3/4+3=1/7

        所以,這批零件共有24÷1/7=168(個)

        例3

        一件工作,甲獨做12小時完成,乙獨做10小時完成,丙獨做15小時完成。現在甲先做2小時,余下的由乙丙二人合做,還需幾小時才能完成?

        解

        必須先求出各人每小時的工作效率。如果能把效率用整數表示,就會給計算帶來方便,因此,我們設總工作量為12、10、和15的某一公倍數,例如最小公倍數60,則甲乙丙三人的工作效率分別是

        60÷12=560÷10=660÷15=4

        因此余下的工作量由乙丙合做還需要

        (60-5×2)÷(6+4)=5(小時)

        答:還需要5小時才能完成。

        例4

        一個水池,底部裝有一個常開的排水管,上部裝有若干個同樣粗細的進水管。當打開4個進水管時,需要5小時才能注滿水池;當打開2個進水管時,需要15小時才能注滿水池;現在要用2小時將水池注滿,至少要打開多少個進水管?

        解:

        注(排)水問題是一類特殊的工程問題。往水池注水或從水池排水相當于一項工程,水的流量就是工作量,單位時間內水的流量就是工作效率。

        要2小時內將水池注滿,即要使2小時內的進水量與排水量之差剛好是一池水。為此需要知道進水管、排水管的工作效率及總工作量(一池水)。只要設某一個量為單位1,其余兩個量便可由條件推出。

        我們設每個同樣的進水管每小時注水量為1,則4個進水管5小時注水量為(1×4×5),2個進水管15小時注水量為(1×2×15),從而可知

        每小時的排水量為(1×2×15-1×4×5)÷(15-5)=1

        即一個排水管與每個進水管的工作效率相同。由此可知

        一池水的總工作量為1×4×5-1×5=15

        又因為在2小時內,每個進水管的注水量為1×2,

        所以,2小時內注滿一池水

        至少需要多少個進水管?(15+1×2)÷(1×2)

        =8.5≈9(個)

        答:至少需要9個進水管。


      16

      正反比例問題

        【含義】

        兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比的比值一定(即商一定),那么這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。正比例應用題是正比例意義和解比例等知識的綜合運用。

        兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。反比例應用題是反比例的意義和解比例等知識的綜合運用。

        【數量關系】

        判斷正比例或反比例關系是解這類應用題的關鍵。許多典型應用題都可以轉化為正反比例問題去解決,而且比較簡捷。

        【解題思路和方法】

        解決這類問題的重要方法是:把分率(倍數)轉化為比,應用比和比例的性質去解應用題。

        正反比例問題與前面講過的倍比問題基本類似。

        例1

        修一條公路,已修的是未修的1/3,再修300米后,已修的變成未修的1/2,求這條公路總長是多少米?

        解

        由條件知,公路總長不變。

        原已修長度∶總長度=1∶(1+3)=1∶4=3∶12

        現已修長度∶總長度=1∶(1+2)=1∶3=4∶12

        比較以上兩式可知,把總長度當作12份,則300米相當于(4-3)份,從而知公路總長為300÷(4-3)×12=3600(米)

        答:這條公路總長3600米。

        例2

        張晗做4道應用題用了28分鐘,照這樣計算,91分鐘可以做幾道應用題?

        解

        做題效率一定,做題數量與做題時間成正比例關系

        設91分鐘可以做X應用題則有28∶4=91∶X

        28X=91×4X=91×4÷28X=13

        答:91分鐘可以做13道應用題。

        例3

        孫亮看《十萬個為什么》這本書,每天看24頁,15天看完,如果每天看36頁,幾天就可以看完?

        解

        書的頁數一定,每天看的頁數與需要的天數成反比例關系

        設X天可以看完,就有24∶36=X∶15

        36X=24×15X=10

        答:10天就可以看完。


      17

      按比例分配問題

        【含義】

        所謂按比例分配,就是把一個數按照一定的比分成若干份。這類題的已知條件一般有兩種形式:一是用比或連比的形式反映各部分占總數量的份數,另一種是直接給出份數。

        【數量關系】

        從條件看,已知總量和幾個部分量的比;從問題看,求幾個部分量各是多少。總份數=比的前后項之和

        【解題思路和方法】

        先把各部分量的比轉化為各占總量的幾分之幾,把比的前后項相加求出總份數,再求各部分占總量的幾分之幾(以總份數作分母,比的前后項分別作分子),再按照求一個數的幾分之幾是多少的計算方法,分別求出各部分量的值。

        例1

        學校把植樹560棵的任務按人數分配給五年級三個班,已知一班有47人,二班有48人,三班有45人,三個班各植樹多少棵?

        解

        總份數為47+48+45=140

        一班植樹560×47/140=188(棵)

        二班植樹560×48/140=192(棵)

        三班植樹560×45/140=180(棵)

        答:一、二、三班分別植樹188棵、192棵、180棵。

        例2

        用60厘米長的鐵絲圍成一個三角形,三角形三條邊的比是3∶4∶5。三條邊的長各是多少厘米?

        解

        3+4+5=1260×3/12=15(厘米)

        60×4/12=20(厘米)

        60×5/12=25(厘米)

        答:三角形三條邊的長分別是15厘米、20厘米、25厘米。

        例3

        從前有個牧民,臨死前留下遺言,要把17只羊分給三個兒子,大兒子分總數的1/2,二兒子分總數的1/3,三兒子分總數的1/9,并規定不許把羊宰割分,求三個兒子各分多少只羊。

        解

        如果用總數乘以分率的方法解答,顯然得不到符合題意的整數解。如果用按比例分配的方法解,則很容易得到

        1/2∶1/3∶1/9=9∶6∶2

        9+6+2=1717×9/17=9

        17×6/17=617×2/17=2

        答:大兒子分得9只羊,二兒子分得6只羊,三兒子分得2只羊。

        例4

        某工廠第一、二、三車間人數之比為8∶12∶21,第一車間比第二車間少80人,三個車間共多少人?

        解

        80÷(12-8)×(8+12+21)=820(人)

        答:三個車間一共820人。


      18

      百分數問題

        【含義】

        百分數是表示一個數是另一個數的百分之幾的數。百分數是一種特殊的分數。分數常常可以通分、約分,而百分數則無需;分數既可以表示“率”,也可以表示“量”,而百分數只能表示“率”;分數的分子、分母必須是自然數,而百分數的分子可以是小數;百分數有一個專門的記號“%”。

        在實際中和常用到“百分點”這個概念,一個百分點就是1%,兩個百分點就是2%。

        【數量關系】

        掌握“百分數”、“標準量”“比較量”三者之間的數量關系:

        百分數=比較量÷標準量

        標準量=比較量÷百分數

        【解題思路和方法】

        一般有三種基本類型:

        (1)求一個數是另一個數的百分之幾;

        (2)已知一個數,求它的百分之幾是多少;

        (3)已知一個數的百分之幾是多少,求這個數。

        例1

        倉庫里有一批化肥,用去720千克,剩下6480千克,用去的與剩下的各占原重量的百分之幾?

        解

        (1)用去的占720÷(720+6480)=10%

        (2)剩下的占6480÷(720+6480)=90%

        答:用去了10%,剩下90%。

        例2

        紅旗化工廠有男職工420人,女職工525人,男職工人數比女職工少百分之幾?

        解

        本題中女職工人數為標準量,男職工比女職工少的人數是比較量所以(525-420)÷525=0.2=20%

        或者1-420÷525=0.2=20%

        答:男職工人數比女職工少20%。

        例3

        紅旗化工廠有男職工420人,女職工525人,女職工比男職工人數多百分之幾?

        解

        本題中以男職工人數為標準量,女職工比男職工多的人數為比較量,因此

        (525-420)÷420=0.25=25%

        或者525÷420-1=0.25=25%

        答:女職工人數比男職工多25%。

        例4

        紅旗化工廠有男職工420人,有女職工525人,男、女職工各占全廠職工總數的百分之幾?

        解

        (1)男職工占420÷(420+525)=0.444=44.4%

        (2)女職工占525÷(420+525)=0.556=55.6%

        答:男職工占全廠職工總數的44.4%,女職工占55.6%。


      19

      “牛吃草”問題

        【含義】

        “牛吃草”問題是大科學家牛頓提出的問題,也叫“牛頓問題”。這類問題的特點在于要考慮草邊吃邊長這個因素。

        【數量關系】

        草總量=原有草量+草每天生長量×天數

        【解題思路和方法】

        解這類題的關鍵是求出草每天的生長量。

        例1

        一塊草地,10頭牛20天可以把草吃完,15頭牛10天可以把草吃完。問多少頭牛5天可以把草吃完?

        解

        草是均勻生長的,所以,草總量=原有草量+草每天生長量×天數。求“多少頭牛5天可以把草吃完”,就是說5天內的草總量要5天吃完的話,得有多少頭牛?設每頭牛每天吃草量為1,按以下步驟解答:

        (1)求草每天的生長量

        因為,一方面20天內的草總量就是10頭牛20天所吃的草,即(1×10×20);另一方面,20天內的草總量又等于原有草量加上20天內的生長量,所以

        1×10×20=原有草量+20天內生長量

        同理1×15×10=原有草量+10天內生長量

        由此可知(20-10)天內草的生長量為

        1×10×20-1×15×10=50

        因此,草每天的生長量為50÷(20-10)=5

        (2)求原有草量

        原有草量=10天內總草量-10內生長量=1×15×10-5×10=100

        (3)求5天內草總量

        5天內草總量=原有草量+5天內生長量=100+5×5=125

        (4)求多少頭牛5天吃完草

        因為每頭牛每天吃草量為1,所以每頭牛5天吃草量為5。

        因此5天吃完草需要牛的頭數125÷5=25(頭)

        答:需要5頭牛5天可以把草吃完。

        例2

        一只船有一個漏洞,水以均勻速度進入船內,發現漏洞時已經進了一些水。如果有12個人淘水,3小時可以淘完;如果只有5人淘

        水,要10小時才能淘完。求17人幾小時可以淘完?

        解

        這是一道變相的“牛吃草”問題。與上題不同的是,最后一問給出了人數(相當于“牛數”),求時間。設每人每小時淘水量為1,按以下步驟計算:

        (1)求每小時進水量

        因為,3小時內的總水量=1×12×3=原有水量+3小時進水量

        10小時內的總水量=1×5×10=原有水量+10小時進水量

        所以,(10-3)小時內的進水量為1×5×10-1×12×3=14

        因此,每小時的進水量為14÷(10-3)=2

        (2)求淘水前原有水量

        原有水量=1×12×3-3小時進水量=36-2×3=30

        (3)求17人幾小時淘完

        17人每小時淘水量為17,因為每小時漏進水為2,所以實際上船中每小時減少的水量為(17-2),所以17人淘完水的時間是

        30÷(17-2)=2(小時)

        答:17人2小時可以淘完水。


      20

      雞兔同籠問題

        【含義】

        這是古典的算術問題。已知籠子里雞、兔共有多少只和多少只腳,求雞、兔各有多少只的問題,叫做第一雞兔同籠問題。已知雞兔的總數和雞腳與兔腳的差,求雞、兔各是多少的問題叫做第二雞兔同籠問題。

        【數量關系】

        第一雞兔同籠問題:

        假設全都是雞,則有

        兔數=(實際腳數-2×雞兔總數)÷(4-2)

        假設全都是兔,則有

        雞數=(4×雞兔總數-實際腳數)÷(4-2)

        第二雞兔同籠問題:

        假設全都是雞,則有

        兔數=(2×雞兔總數-雞與兔腳之差)÷(4+2)

        假設全都是兔,則有

        雞數=(4×雞兔總數+雞與兔腳之差)÷(4+2)

        【解題思路和方法】

        解答此類題目一般都用假設法,可以先假設都是雞,也可以假設都是兔。如果先假設都是雞,然后以兔換雞;如果先假設都是兔,然后以雞換兔。這類問題也叫置換問題。通過先假設,再置換,使問題得到解決。

        例1

        長毛兔子蘆花雞,雞兔圈在一籠里。數數頭有三十五,腳數共有九十四。請你仔細算一算,多少兔子多少雞?

        解

        假設35只全為兔,則

        雞數=(4×35-94)÷(4-2)=23(只)

        兔數=35-23=12(只)

        也可以先假設35只全為雞,則

        兔數=(94-2×35)÷(4-2)=12(只)

        雞數=35-12=23(只)

        答:有雞23只,有兔12只。

        例2

        2畝菠菜要施肥1千克,5畝白菜要施肥3千克,兩種菜共16畝,施肥9千克,求白菜有多少畝?

        解

        此題實際上是改頭換面的“雞兔同籠”問題。“每畝菠菜施肥(1÷2)千克”與“每只雞有兩個腳”相對應,“每畝白菜施肥(3÷5)千克”與“每只兔有4只腳”相對應,“16畝”與“雞兔總數”相對應,“9千克”與“雞兔總腳數”相對應。假設16畝全都是菠菜,則有

        白菜畝數=(9-1÷2×16)÷(3÷5-1÷2)=10(畝)

        答:白菜地有10畝。

        例3

        李老師用69元給學校買作業本和日記本共45本,作業本每本3.20元,日記本每本0.70元。問作業本和日記本各買了多少本?

        解

        此題可以變通為“雞兔同籠”問題。假設45本全都是日記本,則有

        作業本數=(69-0.70×45)÷(3.20-0.70)=15(本)

        日記本數=45-15=30(本)

        答:作業本有15本,日記本有30本。

        例4

        (第二雞兔同籠問題)雞兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?

        解

        假設100只全都是雞,則有

        兔數=(2×100-80)÷(4+2)=20(只)

        雞數=100-20=80(只)

        答:有雞80只,有兔20只。

        例5

        有100個饃100個和尚吃,大和尚一人吃3個饃,小和尚3人吃1個饃,問大小和尚各多少人?

        解

        假設全為大和尚,則共吃饃(3×100)個,比實際多吃(3×100-100)個,這是因為把小和尚也算成了大和尚,因此我們在保證和尚總數100不變的情況下,以“小”換“大”,一個小和尚換掉一個大和尚可減少饃(3-1/3)個。因此,共有小和尚

        (3×100-100)÷(3-1/3)=75(人)

        共有大和尚100-75=25(人)

        答:共有大和尚25人,有小和尚75人。


      21

      方陣問題

        【含義】

        將若干人或物依一定條件排成正方形(簡稱方陣),根據已知條件求總人數或總物數,這類問題就叫做方陣問題。

        【數量關系】

        (1)方陣每邊人數與四周人數的關系:

        四周人數=(每邊人數-1)×4

        每邊人數=四周人數÷4+1

        (2)方陣總人數的求法:

        實心方陣:總人數=每邊人數×每邊人數

        空心方陣:總人數=(外邊人數)?-(內邊人數)?

        內邊人數=外邊人數-層數×2

        (3)若將空心方陣分成四個相等的矩形計算,則:

        總人數=(每邊人數-層數)×層數×4

        【解題思路和方法】

        方陣問題有實心與空心兩種。實心方陣的求法是以每邊的數自乘;空心方陣的變化較多,其解答方法應根據具體情況確定。

        例1

        在育才小學的運動會上,進行體操表演的同學排成方陣,每行22人,參加體操表演的同學一共有多少人?

        解

        22×22=484(人)

        答:參加體操表演的同學一共有484人。

        例2

        有一個3層中空方陣,最外邊一層有10人,求全方陣的人數。

        解

        10-(10-3×2)?

        =84(人)

        答:全方陣84人。

        例3

        有一隊學生,排成一個中空方陣,最外層人數是52人,最內層人數是28人,這隊學生共多少人?

        解

        (1)中空方陣外層每邊人數=52÷4+1=14(人)

        (2)中空方陣內層每邊人數=28÷4-1=6(人)

        (3)中空方陣的總人數=14×14-6×6=160(人)

        答:這隊學生共160人。

        例4

        一堆棋子,排列成正方形,多余4棋子,若正方形縱橫兩個方向各增加一層,則缺少9只棋子,問有棋子多少個?

        解

        (1)縱橫方向各增加一層所需棋子數=4+9=13(只)

        (2)縱橫增加一層后正方形每邊棋子數=(13+1)÷2=7(只)

        (3)原有棋子數=7×7-9=40(只)

        答:棋子有40只。

        例5

        有一個三角形樹林,頂點上有1棵樹,以下每排的樹都比前一排多1棵,最下面一排有5棵樹。這個樹林一共有多少棵樹?

        解

        第一種方法:1+2+3+4+5=15(棵)

        第二種方法:(5+1)×5÷2=15(棵)

        答:這個三角形樹林一共有15棵樹。


      小學數學知識點總結》出自:百味書屋
      鏈接地址:http://www.alexanderday.net/news/182662.html
      轉載請保留,謝謝!
      查看更多相關內容>>小學數學知識點總結
      相關文章
      • 八年級下冊期末物理

        初二下冊物理期末試卷及答案期末考試初二物理試卷一、單項選擇題:下列各小題均有四個選項,其中只有一個符合題意(共28分,每小題2分) 1.下列單位中,壓強的單位是A.帕斯卡B....

      • 七年級政治下冊,有序的社會

        七年級政治導學案有序地社會第十一課第十一課有序的社會【學習目標】1、知識目標:知道法律的含義、特征,理解我國法律的本質和作用;知道憲法是國家的根本大法;了解依法治國的內...

      • 五四制八年級物理課本

        初中物理簡單機械(魯科版八年級下五四制)單元評價檢測(四)第九章(45分鐘100分)一、選擇題(本大題共8小題,每小題3分,共24分)1 (2012·煙臺中考)在你學過的簡單機械里既可以...

      • 譯林版九年級英語上冊知識點

        蘇教版譯林九年級上冊Unit1重點歸納Unit1重點歸納1 eatup useup runup beusedup2 Describe描述n description3 Showoff炫耀4 Becuriousabout對……感到好奇5 Getangryeas...

      • 七年級上冊地理中山市期末試卷

        廣東省中山市2015-2016學年七年級第一學期期末測試地理試題及答案中山市2015–2016學年度上學期期末水平測試試卷七年級地理本試卷分為第I卷(選擇題)和第II卷(非選擇題)兩部分...

      • 人教版必修一地理電子課本

        高中地理必修1課本教材(人教版)第一章行星地球地球是宇宙中的一顆行星,有自己的運動規律。地球上的許多自然現象都與地球的運動密切相關。地球具有適合生命演化和人類發展的條件,...

      • 2016曲靖市小升初日期

        2016小升初行程問題寄語:一個一個夢飛出了天窗一次一次想穿梭舊時光插上竹蜻蜓張開了翅膀飛到任何想要去的地方行程問題【知識點梳理】行程問題是研究物體運動的,它研究的是物體...

      • 2016云南省數學會考真題

        2016云南會考試卷機密★2016年6月15日啟用前2016年云南省普通高中學生學業基礎會專歷史試題(考試時間:90分鐘;滿分:100分)本試卷分第1卷和第Ⅱ卷兩部分。第1卷為選擇題,第Ⅱ...

      • 2016會計基礎知識點

        2016會計基礎知識重點第一章??總論本章主要內容第一節會計的概念與目標第二節會計的職能與方法第三節會計基本假設與會計基礎第四節會計信息的使用者及其質量要求第五節??會計準則...

      • 2016八年級上冊歷史期末試卷

        2015-2016八年級上冊歷史期末測試卷2015-2016八年級上冊歷史期末測試卷姓名班級座號分數1、林則徐是中國人民心中的民族英雄,受到中國人民永遠的尊敬,這主要是因為()A 林則徐...

      推薦范文
      彩34 www.wentiangouwu.com:桐庐县| www.pottytrainingclass.com:桃园县| www.orchardbeachcarshow.com:昭通市| www.akillipet.com:清原| www.cp5586.com:郯城县| www.publicjusticeforum.org:徐汇区| www.truemonism.com:稷山县| www.elipalteco.com:鹤壁市| www.clsiouxlookout.com:黎城县| www.jingyi111.com:茶陵县| www.face53.com:盐源县| www.zxjianfei.com:郯城县| www.sweetandnastyburlesque.com:额敏县| www.laithu.com:保德县| www.blondemillennial.com:慈利县| www.sutibao.com:河北省| www.0830d.com:溧阳市| www.mugua668.com:伊川县| www.reitzhausproductions.com:堆龙德庆县| www.r-bowlder.com:旌德县| www.princesstickets.com:桐乡市| www.nzlvisa.com:林口县| www.thailand-china.com:黄山市| www.yctcg.cn:丹凤县| www.dengfuwu.com:徐闻县| www.sunmesjournals.com:汶上县| www.global-b2b-market.com:同江市| www.sableridgevillage.com:珲春市| www.jiaanhb.com:武安市| www.927945.com:安福县| www.jnquanjing.com:麻江县| www.welcolan.com:晋江市| www.chocolate-artist.com:昌宁县| www.primpandwear.com:航空| www.sgiphone.com:葵青区| www.inhouse-outhouse.com:勐海县| www.elliswoodcollection.com:巩义市| www.shkef.com:葫芦岛市| www.wwwlaoren.com:仁化县| www.jonianet.com:利川市| www.skatesharks.com:汝南县| www.beautyincarnate.com:新化县| www.holistichealthtalk.com:社会| www.linmaomiaomu.com:工布江达县| www.948066.com:旺苍县| www.fr662.com:静安区| www.z8683.com:昂仁县| www.boyimall.com:武宁县| www.mymcmz.com:尖扎县| www.316gm.com:根河市| www.motorhomevalue.com:绵竹市| www.comfymassagetable.com:顺平县| www.me2email.com:德州市| www.wpudining.com:南岸区| www.689020.com:鄂尔多斯市| www.loucolagiovanni.com:江达县| www.thuebannhadat.net:英超| www.dessertsstraightup.com:晋城| www.cccmlogistics.com:宝山区| www.shouhui1.com:南皮县| www.coolvier.com:板桥市| www.wobocai.com:广汉市| www.798666z.com:常德市| www.the-youngers.org:仁化县| www.abdulkafi.com:通榆县| www.huidenhd.com:温泉县| www.cp9663.com:诸城市| www.bumibuana.com:涿鹿县| www.vmorepro.com:湘潭县| www.gythe.cn:闻喜县| www.bhwwz.com:华阴市| www.jiescience.com:阿拉善左旗| www.sqyztzzxyxgs.com:延长县| www.xuanfengling.com:庐江县| www.clubefarroupilha.com:库尔勒市| www.ncldty.com:白沙| www.pstee.com:乌拉特中旗| www.himanidalmia.com:竹溪县| www.tjdqlmc8.com:仁布县| www.krntz.com:谢通门县| www.avexi.cn:彝良县| www.buycartierwatches.com:安西县| www.sevtree.com:隆德县| www.chevroletbandung.com:和静县|